Evolutionary Origin and Conserved Structural Building Blocks of Riboswitches and Ribosomal RNAs: Riboswitches as Probable Target Sites for Aminoglycosides Interaction.
نویسندگان
چکیده
PURPOSE Riboswitches, as noncoding RNA sequences, control gene expression through direct ligand binding. Sporadic reports on the structural relation of riboswitches with ribosomal RNAs (rRNA), raises an interest in possible similarity between riboswitches and rRNAs evolutionary origins. Since aminoglycoside antibiotics affect microbial cells through binding to functional sites of the bacterial rRNA, finding any conformational and functional relation between riboswitches/rRNAs is utmost important in both of medicinal and basic research. METHODS Analysis of the riboswitches structures were carried out using bioinformatics and computational tools. The possible functional similarity of riboswitches with rRNAs was evaluated based on the affinity of paromomycin antibiotic (targeting "A site" of 16S rRNA) to riboswitches via docking method. RESULTS There was high structural similarity between riboswitches and rRNAs, but not any particular sequence based similarity between them was found. The building blocks including "hairpin loop containing UUU", "peptidyl transferase center conserved hairpin A loop"," helix 45" and "S2 (G8) hairpin" as high identical rRNA motifs were detected in all kinds of riboswitches. Surprisingly, binding energies of paromomycin with different riboswitches are considerably better than the binding energy of paromomycin with "16S rRNA A site". Therefore the high affinity of paromomycin to bind riboswitches in comparison with rRNA "A site" suggests a new insight about riboswitches as possible targets for aminoglycoside antibiotics. CONCLUSION These findings are considered as a possible supporting evidence for evolutionary origin of riboswitches/rRNAs and also their role in the exertion of antibiotics effects to design new drugs based on the concomitant effects via rRNA/riboswitches.
منابع مشابه
Development of a new sequential block finding strategy for detection of conserved sequences in riboswitches
Introduction: Some non-coding RNAs have an important role in the regulation of gene expression and consequently cellular function. Riboswitches are examples of these regulatory RNAs. Riboswitches are classified into various families according to sequential and structural similarities. Methods: In this study, a block finder algorithm for identification of frequently appearing sequential blocks i...
متن کاملEvolutionary Evidence for Alternative Structure in RNA Sequence Co-variation
Sequence conservation and co-variation of base pairs are hallmarks of structured RNAs. For certain RNAs (e.g. riboswitches), a single sequence must adopt at least two alternative secondary structures to effectively regulate the message. If alternative secondary structures are important to the function of an RNA, we expect to observe evolutionary co-variation supporting multiple conformations. W...
متن کاملScreening for engineered neomycin riboswitches that control translation initiation.
Riboswitches are genetic control elements that regulate gene expression in a small molecule-dependent way. We developed a two-stage strategy of in vitro selection followed by a genetic screen and identified several artificial small molecule-binding riboswitches that respond to the aminoglycoside neomycin. Structure-function relationships and structural probing revealed that they adopt the gener...
متن کاملThe tRNA Elbow in Structure, Recognition and Evolution
Prominent in the L-shaped three-dimensional structure of tRNAs is the "elbow" where their two orthogonal helical stacks meet. It has a conserved structure arising from the interaction of the terminal loops of the D- and T-stem-loops, and presents to solution a flat face of a tertiary base pair between the D- and T-loops. In addition to the ribosome, which interacts with the elbow in all three o...
متن کاملRiboswitches exert genetic control through metabolite-induced conformational change.
Conserved RNA structures have traditionally been thought of as potential binding sites for protein factors and consequently are regarded as fulfilling relatively passive albeit important roles in cellular processes. With the discovery of riboswitches, RNA no longer takes a backseat to protein when it comes to affecting gene expression. Riboswitches bind directly to cellular metabolites with exc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Advanced pharmaceutical bulletin
دوره 4 3 شماره
صفحات -
تاریخ انتشار 2014